perpendicular and parallel to the plane of the crack, respectively; t, time; to, time when
the process ji begins; Gk, Cartesian components of the current density and electric field
vectors averaged over the volume; Ok, components of the stress tensor; nk, components of
the vector of the unit normal to the crack; & and y, spherical width and length specifying
the direction of this vector; Z = {a, co, to, Pos €c, Act; Po, initial value of p; Q = {&,
v}, (2, Q), distribution function; N, number of cracks per unit volume; a®, root mean cubic
radius of the crack; and w, angular frequency of the electric field oscillations.
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NUMERICAL SOLUTION OF A NONLINEAR POISSON EQUATION

L. A. Knizhnerman, V. A. Kronrod, UDC 517.544:536.24.02
and V. Z. Sokolinskii

A method that is convenient for practical applications is proposed for solving
the nonlinear Poisson equatiomn.

A particular class of problems for heat exchange and for magnetohydrodynamics leads to
the solution of the Poisson equation with a substantial nonlinearity on the right-hand side.

We consider the Dirichlet problem for Poisson's equation
Au (x, y) = f(x. Y, u)9 ulp = (P(x: y) (1)

To simplify the discussion, we assume the region to be rectangular. Using quasilinearization
[1] we construct the following iterational process:

Ay — fu(@) v = f @) —fu @) ©, (2)
where w = u(n); v = u(m**); n is the number of the iteration.

The iterational process (2) ensures quadratic convergence for the condition of exact
solution of (2) with fixed right-hand side for each iteration [1].

To determine the values of v for each iteration we use a method of incomplete factoriza-
tion, similar to that described in [2]. But unlike what was assumed in [2] the splitting of
the initial difference operator is represented in the form of the composition of two opera-
tors with variable coefficients.

We consider the difference analog of Eq. (2)
Ap™ = q" () + O(F), (3)

where m is the index of the iteration for solution of the n~th of Egqs. (2); qB is the right-
hand side of (2) with correction, ensuring the required order of approximation; h equals the
maximum of the steps hy and hy along the horizontal and vertical directions.

On a nine-point pattern we represent the solution of (3) in the form
@V + ULy T i =
(4)
ailz',"l,,'_*_] + buzﬁ'} + ai.iz'xn,j_1 = Qf} y
where the lower indices have the usual meaning. The difference operator on the left side of

(3) can easily be transformed by two successive pivots with total number of operations O(N),
where N is the number of points of the grid.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 6, pp. 1077-1079, June,
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To determine the coefficients a, a, and b and the right-hand side of (3) with the help
of the ordinary procedure of expansion of the terms of the difference operator A in a
Taylor series we construct the system of equations

(2ay; 4 byj) Qayy -+ 1) = Dy
ay Qo + 1) = bz (5)
(a5 + byj) azy = by
@i = max {fu @), —*(hh,) 1},
where ® 1is a negative parameter proportional to h in absolute value.

We determine the function qjj from the condition that the difference scheme (3) satisfy
the approximation (2) with third-order accuracy:

1
gn = Ly + (O —d) (v:r;~* b Ay +

1,0 1 1 9 | S l
L p Ay ermidyy) — [ — ——hx+—h)(——h2)Av’.".-’
+ g Pl d)’) ((Di,+.12 iz M) g M) i
+ a5 (i1, — @) (V7 oy TUIE ) @i (G —oug) (p! L Fonst . )0 (i@i) ; (6)
.

Ty = [ (X, Y @Wij) — fu (X0s Yjr @i5) Wi

1 2 1 2
lLyy=15+ 17 Agtihy + 5T Agtiihy s

dij = [u (%1, Y5, wis)
The difference operators A;, h., and A; to the second order approximate the operators 3“/
ax%5y*, 8%/9x?, and 33/3y*, respectively,

From (5), to determine the coefficients of operator (3) we obtain the expressions

aig=—Ti"
aiy = Ti®7 ' ()% 7)
by = Ty (Tis— 4 @7 ()72

Tyj = @by + 2.

It is not difficult to verify that the conditions of good conditionality of the differ-
ence operator are satisfied. Equation (2) is solved for the n-th iteration by carrying out
an iterational solution of its difference analog (3):

Ap™ = g™ (@, v [, w).

We note that for djj > ——'»(,(hxhy)"l, i.e., for large nonlinearity, the difference operator (3)
approximates (2) with high accuracy, which is verified by numerical experiments. In numer-
ical calculations for ® = —0.25h, the Poisson equation with fixed right-hand side was inte-
grated 3-4 times for n = 3; subsequently, depending on the convergence for one external iter-
ation we arrived at one internal iteration.

We present two examples of calculations according to the proposed method.

Example 1. Au=exp(u), ur=10, 0<<x<0.5, 0<<y<025. On a 32 x 16 grid with 26 internal
iterations we obtained a difference between iterations not exceeding 0.00001.

For a boundary value of the function equal to 8, the process converged with the same
accuracy for 16 iterations. A change in the initial approximation from 6 to 10 was not re-
flected in the first five decimal places of the result.

Example 2. Au=—05u—05u3 0<<x<l, 0<<y<Cl. The boundary conditions were chosen so
that u = Vsin(x + y) was a solution. On an 8 x 8 grid, a solution in terms of 16 internal
iterations was obtained with the same accuracy as in [3]. The initial approximation equals
zero. The calculation took less than a minute on a BESM~4 computer.
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Numerical experiments carried out with a wide class of functions showed results simi-
lar to those above and confirmed the reliability and effectiveness of the method.

NOTATION

A, Laplacian operator; Au = 3%u/3x® + 3%u/dy®; T, boundary of the rectangle.

LITERATURE CITED

1. R. Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems,
Amer. Elsevier (1965).

2. A. I. Panarin and V. V, Shchennikov, "Tensor uncoupling of multidimensional difference
boundary-value problems," in: Mathematical Physics, No. 3, Moscow State Pedagogical
Institute, Moscow (1976), p. 183.

3. V. S. Drovozyuk and N. Ya. Lyashchenko, "Numerical solution for a first boundary-value
problem for a nonlinear Poisson equation," in: Computational and Applied Mathematics,
No. 15, Kiev State Univ. (1971).

FINITE~ELEMENT CALCULATIONS ON NONSTATIONARY
HEAT TRANSFER

A. M. Anikeenko and 0. N. Litvin UDC 532.529:518:517.946.9

A finite—element technique has been used in solving a boundary-value problem
for a two-dimensional nonstationary turbulent-diffusion equation.

The deposition and transport of particles in a flow of liquid can be described by a
turbulent~-diffusion equation if the concentration of the solid is low and the particles are
sufficiently small. Rose [!] has defined the limits to the application of the diffusion
theory with regard to particle size by experiment.

The models of [2,3] are relevant to the description of these processes, and some fea-
tures of these are used here. The model of [3] describes the steady-state deposition of a
solid material in a planar semiinfinite channel in the form of a boundary-value problem for
a stationary equation in turbulent diffusion. A numerical solution was obtained by finite-
difference methods and this is compared with experiment. Other studies [4~6] deal with
models for water quality, in which the equations of hydrodynamics and turbulent diffusion
" are employed.

There are also other discussions [7-9] of nonstationary equations for turbulent diffu-
sion; it has been suggested [8,9] that Galerkin's method should be used together with the
finite-element technique, and the relevant systems of equations have been derived, but nu-
merical treatments have been given only for the one~dimensional case [9] and for the two=-
dimensional case but neglecting convective terms [8]. In [7] we find a solution to a two=-
dimensional boundary-~value problem subject to homogeneous Dirichlet conditions on the assump-
tion that the turbulent-diffusion coefficients are constants and that there is a source of
the minor component within the region only at the start.

Here we consider a model for the transport and deposition of a material suspended in a
planar flow; we assume that the velocity components and the turbulent-diffusion coefficients
are known functions of time and the coordinates, in which case the model can be represented
as a boundary-value problem:
ac’ , oc’

oo
Wx, 2z, ') — — -
X +W 2 1) 0z e 0z

ac’
U, z, ¢t
P +Ulx ) 3
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