
perpendicular and parallel to the plane of the crack, respectively; t, time; to, time when 
the process Jk begins; Gk, Cartesian components of the current density and electric field 
vectors averaged over the volume; Ok% , components of the stress tensor; nk, components of 
the vector of the unit normal to the-crack; ~ and 4, spherical width and length specifying 
the direction of this vector; Z = {a, Co, to, po, ec, ~c}; po, initial value of p; ~ = {~, 
4}, f(Z, ~), distribution function; N, number of cracks per unit volume; ~3, root mean cubic 
radius of the crack; and m, angular frequency of the electric field oscillations. 
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NUMERICAL SOLUTION OF A NONLINEAR POISSON EQUATION 

L. A. Knizhnerman, V. A. Kronrod, 
and V. Z. Sokolinskii 

UDC 517.544:536.24.02 

A method that is convenient for practical applications is proposed for solving 
the nonlinear Poisson equation. 

A particular class of problems for heat exchange and for magnetohydrodynamics leads to 
the solution of the Poisson equation with a substantial nonlinearity on the right-hand side. 

We consider the Dirichlet problem for Poisson's equation 

Au (x, ~ = f (x, y, u), ulr = �9 (x, y). ( ] )  

To s i m p l i f y  t h e  d i s c u s s i o n ,  we assume t h e  r e g i o n  to  be  r e c t a n g u l a r .  U s i n g  q u a s i l i n e a r i z a t i o n  
[1] we c o n s t r u c t  t he  f o l l o w i n g  i t e r a t i o n a l  p r o c e s s :  

a o - t ; ( w ) o  = (2) 

where  w = u ( n ) ;  v = u ( n + t ) ;  n i s  t h e  number  o f  t he  i t e r a t i o n .  

The i t e r a t i o n a l  p r o c e s s  (2)  e n s u r e s  q u a d r a t i c  c o n v e r g e n c e  f o r  t h e  c o n d i t i o n  o f  e x a c t  
solution of (2) with fixed right-hand side for each iteration []]. 

To determine the values of v for each iteration we use a method of incomplete factoriza- 
tion, similar to that described in [2]. But unlike what was assumed in [2] the splitting of 
the initial difference operator is represented in the form of the composition of two opera- 
tors with variable coefficients. 

We consider the difference analog of Eq. (2) 

A ~  ~ = q~ (v) + O (ha), (3 )  

where  m i s  the  i ndex  o f  t h e  i t e r a t i o n  f o r  s o l u t i o n  of  the  n - t h  o f  Eqs. ( 2 ) ;  qm i s  t h e  r i g h t -  
hand s i d e  of  (2) w i t h  c o r r e c t i o n ,  e n s u r i n g  the  r e q u i r e d  o r d e r  of  a p p r o x i m a t i o n ;  h e q u a l s  t h e  
maximum of  t h e  s t e p s  h x and hy a l o n g  t h e  h o r i z o n t a l  and v e r t i c a l  d i r e c t i o n s .  

On a nine-point pattern we represent the solution of (3) in the form 

~f~ i ]  + ~ h ,  .j + ~tJ~+,  ,I = z~ .  
,1, (4) 

a u ~ i + ,  + buz~ + a u ~ 4 _ l  = q~ , 

where the lower indices have the usual meaning. The difference operator on the left side of 
(3) can easily be transformed by two successive pivots with total number of operations O(N), 
where N is the number of points of the grid. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 6, pp. 1077-]079, June, 
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To determine the coefficients a, a, and b and the right-hand side of (3) with the help 
of the ordinary procedure of expansion of'the terms of the difference operator A h in a 
Taylor series we construct the system of equations 

/ (2a~t q- bo) (2atl + 1) = @it; 

all(2aij + 1) = hx2; (5) 

(2(lij "J- bit ) t~ij = h~2; 

~ u  = max {[,~ (w~i), - -  x ( l z~y ) -q ,  

where ~ i s  a n e g a t i v e  paramete r  p r o p o r t i o n a l  to  h in  a b s o l u t e  va lue .  

We de te rmine  the f u n c t i o n  q i j  from the  c o n d i t i o n  t ha t  the  d i f f e r e n c e  scheme (3) s a t i s f y  
the  approx imat ion  (2) wi th  t h i r d - o r d e r  accuracy :  

1 h2x A~ (v " - I  d)it + q~ = lij-q- ( O i S -  dit) ~ii-' + 1"2 

+ ~ -  h ~ A . ( o ~  - -  + x + ~ -  t, . i Y  * '"  '; + 

- -  ' " " - '  '~ ' 0 { h ~ ) ;  (6)  q-aii(ai+l.i =o)(~-~l',i-~ +r -r-~_,. i_~, v- / @~ �9 

I o ! 
lit ~--- 'ri.t "]- - -~  Afrijhx "q- -~2 Aa'riJh'u ; 

di.i  = [',, (x~, ~t, ~'.). 
The d i f f e r e n c e  o p e r a t o r s  A,,  A~, and As to  the second o rde r  approximate  the  o p e r a t o r s  -3a/ 
Ox~3y ~, 3"/3x *, and 3~/3y*,  r e s p e c t i v e l y .  

From (5) ,  to  de t e rmine  the  c o e f f i c i e n t s  of  o p e r a t o r  (3) we o b t a i n  the  e x p r e s s i o n s  

a~ = T , ~ '  (h..h,)-2; (7) 

o I 

Ttj = ~ i h ~  -7- 2. 

I t  i s  not  d i f f i c u l t  to v e r i f y  t ha t  the  c o n d i t i o n s  of  good c o n d i t i o n a l i t y  of the d i f f e r -  
ence o p e r a t o r  a re  s a t i s f i e d .  Equat ion  (2) i s  so lved  f o r  the n - t h  i t e r a t i o n  by ca r ry ing  out  
an i t e r a t i o n a l  s o l u t i o n  of  i t s  d i f f e r e n c e  analog (3):  

A~vm= q~(W, v ~-', [, w). 

We no t e  t h a t  f o r  d i j  >>-~(hxhy) -1 ,  i . e . ,  f o r  l a r g e  n o n l i n e a r i t y ,  t he  d i f f e r e n c e  o p e r a t o r  (3) 
approx imates  (2) wi th  h igh a c c u r a c y ,  which i s  v e r i f i e d  by numer ica l  exper imen t s .  In numer- 
i c a l  calculations for ~ = -0.25h, the Poisson equation with fixed right-hand side was inte- 
grated 3-4 times for n _< 3; subsequently, depending on the convergence for one external iter- 

ation we arrived at one internal iteration. 

We present two examples of calculations according to the proposed method. 

Example I. Au=exp(u) ,  U[r=10, 0 ~ x ~ 0 , 5 ,  0 ~ y ~ 0 . 2 5 .  On a 32 • 16 grid with 26 internal 
iterations we obtained a difference between iterations not exceeding 0.00001. 

For a boundary value of the function equal to 8, the process converged with the same 
accuracy for 16 iterations. A change in the initial approximation from 6 to 10 was not re- 
flected in the first five decimal places of the result. 

Example 2. Au=--0.5u--0.5u -~, 0~x<~l, 0-~<y~.<l. The boundary conditions were chosen so 
that u = Csin(x + y) was a solution. On an 8 • 8 grid, a solution in terms of 16 internal 
iterations was obtained with the same accuracy as in [3]. The initial approximation equals 
zero. The calculation took less than a minute on a B~SM-4 computer. 

710 



Numerical experiments carried out with a wide class of functions showed results simi- 
lar to those above and confirmed the reliability and effectiveness of the method. 

NOTATION 

A, Laplacian operator; Au = 32u/3x 2 + 32u/3y2; F, boundary of the rectangle. 

I . 

2. 
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FINITE-ELEMENT CALCULATIONS ON NONSTATIONARY 

HEAT TRANSFER 

A. M. Anikeenko and O. N. Litvin UDC 532.529:518:517.946.9 

A finite-element technique has been used in solving a boundary-value problem 
for a two-dimensional nonstationary turbulent-diffusion equation. 

The deposition and transport of particles in a flow of liquid can be described by a 
turbulent-diffusion equation if the concentration of the solid is low and the particles are 
sufficiently small. Rose [1] has defined the limits to the application of the diffusion 
theory with regard to particle size by experiment. 

The models of [2,3] are relevant to the description of these processes, and some fea- 
tures of these are used here. The model of [3] describes the steady-state deposition of a 
solid material in a planar semiinfinite channel in the form of a boundary-value problem for 
a stationary equation in turbulent diffusion. A numerical solution was obtained by finite- 
difference methods and this is compared with experiment. Other studies [4-6] deal with 
models for water quality, in which the equations of hydrodynamics and turbulent diffusion 
are employed. 

There are also other discussions [7-9] of nonstationary equations for turbulent diffu- 
sion; it has been suggested [8,9] that Galerkin's method should be used together with the 
finite-element technique, and the relevant systems of equations have been derived, but nu- 
merical treatments have been given only for the one-dimensional case [9] and for the two- 
dimensional case but neglecting convective terms [8]. In [7] we find a solution to a two- 
dimensional boundary-value problem subject to homogeneous Dirichlet conditions on the assump- 
tion that the turbulent-diffusion coefficients are constants and that there is a source of 
the minor component within the region only at the start. 

Here we consider a model for the transport and deposition of a material suspended in a 
planar flow; weassume that the velocity components and the turbulent-diffusion coefficients 
are known functions of time and the coordinates, in which case the model can be represented 
as a boundary-value problem: 

Oc' Od Oc' 0c' 
+ u ~,  z, t')--=- + W(x, z, t ' ) - : - -  + ~' - 

Ot ~ Oz Ox o z  
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